Trudeau Institute immunologists are committed to making breakthrough research discoveries that will prevent and treat cancer, asthma, arthritis, colitis, multiple sclerosis, and infectious diseases, such as tuberculosis, influenza, and sepsis.
Pathway to Global Health

Challenge and Opportunity

The world faces unprecedented public health challenges. Population growth, pollution, natural disasters, and climate change are driving an explosive increase in the number of people afflicted by cancer, autoimmune diseases and infectious scourges like malaria, tuberculosis and AIDS. These public health threats do not respect international borders, and they strain the capacity of governments and societal structures to provide adequate healthcare in both developing and developed countries.

The Trudeau Institute’s strategic vision addresses these challenges. Today the Institute is a world-class research facility discovering the immune mechanisms that underlie many disease processes. We are positioned to spearhead global solutions to the emerging health crisis by unraveling the causes of major diseases; developing practical, cost-effective vaccines and therapeutics; and training and deploying scientific talent in developing countries.

A New Way Forward

The Trudeau Institute’s mission and international stature in biomedical research attract immunologists from all over the world. Our studies of the immune system support efforts to develop vaccines and therapeutics for infectious diseases, cancers, sepsis, and chronic inflammatory and autoimmune conditions like diabetes, arthritis, colitis, atherosclerosis, asthma, and multiple sclerosis. Our vision is to transform the Institute into a global network that connects its basic research hub in Saranac Lake, New York, to clinical sites around the world. Linked by an intense focus on immunological training, education and research, the Trudeau Institute and its satellite sites will drive efforts to improve human health worldwide.

In carrying out our mission, we are committed to excellence in our endeavors. The Trudeau Institute’s strategic vision is focused on five goals designed to capitalize on its strengths and achieve its transformational vision.
Excellence
In Scientific Discovery

Disease knows no boundaries.

Goal 1: To make scientific discoveries that improve human health worldwide.

The world identifies the Trudeau Institute with a long and distinguished history of important scientific discovery. Going forward, the Institute will carefully preserve its reputation for scientific excellence while expanding its scientific horizons to encompass new areas where its expertise will lead to high impact discoveries.

We will build on our strength in basic immunology to focus immunologically on cures for some of the world’s most pressing contemporary health problems: cancer, chronic inflammation, autoimmunity, sepsis, influenza, tuberculosis, antibiotic-resistant bacteria, and bioterrorism. Gaining access to advanced technologies is critical to our success. Additionally, we will cultivate strong alliances with physician scientists by developing a sabbatical program that fosters close interaction between bench scientists engaged in basic research and medical practitioners on the front lines of human health needs.
Excellence
In Research Partnerships

Ability knows no boundaries.

Goal 2: To create a global network of partners committed to improving human health.

To achieve our mission of improving human health, the Trudeau Institute must engage with other organizations. While we have great strength and expertise regarding fundamental aspects of the immune system, the dissemination and application of our knowledge and know-how requires partnerships.

Our Saranac Lake, New York, campus will become the hub to a network of partners that can nimbly respond to emerging diseases, new scientific opportunities and changes in funding. We will bring partners to our Saranac Lake hub, establish satellite facilities at partner locations and support field operations with lab-in-a-box deployments. Where possible, we will interact virtually via advanced video teleconferencing and other electronic means, relieving ourselves of the fiscal constraints that result from the management of remote infrastructures.
Knowledge knows no boundaries.

Goal 3: To train and deploy a global network of researchers who share our vision.

The Trudeau Institute has a tradition of teaching and training that began at its inception and continues today. The success of its training program is highlighted by the success of its trainees and by its recognition as one of the “Best Places to Work” for postdoctoral scientists.*

We will build upon this strong foundation by creating a Global Fellows program that will extend the interaction between trainees and the Institute over time and space. We recognize that research into global problems often is done best by scientists who live and work in affected countries; these researchers can access the patients and physicians who thoroughly understand the intricacies of local health issues. We will maximize the impacts of our research by expanding our training, education and conferencing programs to create a collaborative, highly interactive, worldwide network of research scientists.

*according to The Scientist magazine
Excellence
In Operations

Infrastructure can dissolve boundaries.

Goal 4: To build and maintain a solid foundation for our global research network.

Our transformative vision to promote human health requires us to provide the infrastructure and human, technical and capital resources that enable scientific excellence and knowledge dissemination. We will offer exciting, intellectually challenging and collaborative workplaces for our faculty, scientists and staff by providing the tools, capabilities and high quality infrastructures required to nurture world-class research in Saranac Lake, nationally and internationally.

We have already established many processes to manage the Trudeau Institute’s human, capital, scientific, and financial resources. As the transformational model is implemented, we will formalize and scale these processes to meet the needs of global expansion. We will also support our expanded research and training in Saranac Lake with a new conference center and research wing.
Excellence
In Fundraising

Resources to ensure our future.

Goal 5: To diversify and increase funding sources to sustain our legacy and support our vision for global health.

As the transformational model for the Trudeau Institute is implemented, diversification of funding sources is a major goal. Historically, the Institute has been very successful in garnering NIH grants to fund specific labs, support the direct costs of research, and partially support our administration and overhead.

The Institute will expand its efforts to obtain financial support from local, regional, state, and federal sources. In addition, Trudeau’s leadership will develop relationships with global health entities and biopharmaceutical companies, while strengthening funding from private foundations and individual donors.

Our Board of Trustees is committed to increasing donor involvement through special programs in Saranac Lake and the Adirondack region; Palm Beach, Florida; Washington, D.C.; and New York City. These donor programs will expand globally to support our growing network of research and training programs, healthcare initiatives, lab-in-a-box outposts, and satellite facilities.
Examples of the Institute’s Major Scientific Discoveries

1884: Dr. E.L. Trudeau founds the Adirondack Cottage Sanatorium.

1890: Dr. E.L. Trudeau demonstrates that vaccination with "attenuated" bacilli generates protection against tuberculosis.

1885: Dr. E.L. Trudeau is the first scientist in the United States to grow tubercle bacilli in artificial culture.

1887: Dr. E.L. Trudeau demonstrates that living conditions impact ability to combat tuberculosis.

1888: Dr. E.L. Trudeau is the first scientist in the United States to grow tubercle bacilli in artificial culture.

1887: Dr. E.L. Trudeau demonstrates that living conditions impact ability to combat tuberculosis.

1887: Dr. E.L. Trudeau demonstrates that removal of suppressor T cells can improve survival in cancer models; this discovery was the bedrock of modern cellular immunology.

1909: Dr. E.L. Trudeau demonstrates that vaccination with "attenuated" bacilli generates protection against tuberculosis.

1916: Dr. Robert North demonstrates that the lung can create specialized tissue to initiate lung-specific immune responses; this finding impacts how we design vaccines for germs that enter through the lung.

1920: Dr. Robert North and colleagues demonstrate that removal of suppressor T cells can improve survival in cancer models; this is the basis for current therapies being developed in the clinic.

1924: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1928: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1930: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1940: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1945: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1946: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1947: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1948: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1949: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1950: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1951: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1952: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1953: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1954: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1955: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1956: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1957: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1958: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1959: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1960: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1961: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1962: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1963: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1964: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1965: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1966: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1967: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1968: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1969: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1970: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1971: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1972: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1973: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1974: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1975: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1976: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1977: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1978: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1979: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1980: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1981: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1982: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1983: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1984: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1985: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1986: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1987: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1988: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1989: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1990: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1991: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1992: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1993: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1994: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1995: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1996: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1997: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1998: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

1999: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

2000: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

2001: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

2002: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

2003: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

2004: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

2005: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

2006: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

2007: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

2008: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

2009: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

2010: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.

2011: Dr. Joseph Conlan and Robert North discover that selective destruction of infected host cells by other cells is an important mechanism of defense against intracellular bacteria.
Trudeau Institute immunologists are committed to making breakthrough research discoveries that will prevent and treat cancer, asthma, arthritis, colitis, multiple sclerosis, and infectious diseases, such as tuberculosis, influenza, and sepsis.